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EXECUTIVE SUMMARY 

Recent studies by browser vendors indicate that the usage of encrypted HTTPS traffic is 

increasing and it is currently around 70-90% of loaded HTTPS web pages. From an end user 

privacy perspective these are good news. Encryption protocols; such as Transport Layer 

Security, TLS 1.2 & TLS 1.3, provide security guarantees for data confidentiality and integrity 

and one would assume that security hygiene as a whole is raised. Unfortunately, the actual 

picture is more nuanced. Beyond the unavoidable risks posed by new cryptanalytic attacks and 

Quantum computing, there are many issues at hand that impact information security. For 

example, current studies show that many developers fail to properly implement the employed 

encryption schemes in their sites or applications, leading to weak encryption and providing 

users a false sense of security. In contrast, attackers have proved very capable in using 

encryption and cryptographic techniques in their attacks; instances ranging from ransomware to 

employing HTTPS to protect communication with infected devices and avoid detection. 

In light of these developments, it becomes evident that the efficacy of rule-based monitoring and 

detection controls; e.g. Application firewalls, Intrusion Detection and Prevention Systems 

(IDPS), Data Loss Prevention\Protection (DLP) tools etc., which to a great extent relies on 

having access to the unencrypted traffic, is negatively affected. Organizations relying on such 

controls for their information security lose valuable insight and end up having blind spots in their 

managed infrastructure. To counter this vulnerability many organizations try to break end-to-end 

encryption by installing TLS inspection solutions (aka SSL/TLS proxies, middleboxes etc.) in key 

points of their network. This solution allows for the decryption of the encrypted traffic, to provide 

access to the plaintext payload for network monitoring and analysis tools, before re-encrypting it 

and forwarding it to its destination. While this method reclaims [partial] control for the 

organization, it also affects negatively the privacy of end users and is not guaranteed to detect 

all malicious traffic, which might employ custom or non-TLS encryption protocols to avoid 

detection. An alternative, and in our view complimentary, solution would be to employ Machine 

Learning (ML) and Artificial Intelligence (AI) techniques to perform encrypted traffic analysis. 

This report explores the current state of affairs in Encrypted Traffic Analysis and in particular 

discusses research and methods in 6 key use cases; viz. application identification, network 

analytics, user information identification, detection of encrypted malware, 

file/device/website/location fingerprinting and DNS tunnelling detection. In the majority of use 

cases discussed, proposed techniques manage to undo many of the security assumptions 

users have when using encryption, lowering (or more correctly readjusting) privacy 

expectations. For example, application protocols such as DNS, FTP, HTTP, IRC, LIMEWIRE 

etc. may be distinguished using feature-based machine learning with reasonable accuracy, 

while observing certain properties of the encrypted data, it is possible to create data records 

which map these properties to the corresponding files or websites, a concept known as 

fingerprinting, which provides ways to infer which web pages, file, songs or videos are 

requested by a user, even if this traffic is encrypted. On the other hand, such techniques cannot 

offer the same level of insight as normal monitoring and analysis of unencrypted data a gap that 

additional research effort is trying to close as much as possible. 

In addition, the report discusses recent research in TLS practices identifying common improper 

practices and proposing simple yet efficient countermeasures like certificates validation and 

pinning, minimize exposed data over HTTP redirects, using proper private keys and the latest 

versions of TLS (i.e. 1.2 and 1.3), deprecating older ones and employing certificate signing and 

by a trusted CA. While the proposals might seem trivial and only geared towards unexperienced 

developers or small companies, in fact studies have shown that such issues are quite prevalent. 
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1. INTRODUCTION 

The advent of network traffic encryption, such as TLS, has not only significantly improved 

security and user privacy, but also reduced the ability of network administrators to monitor their 

infrastructure for malicious traffic and sensitive data exfiltration. In unencrypted network traffic, 

an eavesdropper; whether malicious (i.e. an attacker), or not (e.g. a network administrator 

monitoring his/her infrastructure) can read network packets and easily view their contents. 

Traffic or packet encryption methods, such as TLS, IPSec etc., on the other hand, ensure that 

while an eavesdropper can still record packets, he can no longer decipher their content or 

modify them without detection. For this reason, many TLS users assume that their connection to 

a web server is not interpretable by third parties. However, this is only partly true, because 

modern encrypted traffic analysis (sometimes called ETA) is able to soften these confidentiality 

gains. Using state-of-the-art methods, an eavesdropper can read the following information from 

encrypted network traffic, which should be private thanks to TLS: 

 They can gain information about the presence or absence of applications installed on a user’s 

smartphone, 

 find out which websites a user is surfing to, even though the user employs both traffic 

encryption and an anonymity network such as TOR, 

 find out which files a user downloads and shares over an encrypted channel, 

 identify user actions in mobile applications and build a user profile 

The privacy of Internet users is therefore largely threatened by encrypted traffic analysis, and 

expected privacy guarantees are no longer fully met. This does not mean that encryption s 

broken or that eavesdroppers have full access to the exchanged data, but rather that our traffic 

and leaks more information than we assumed possible.  

On the other hand, encrypted traffic analysis can also be a useful tool for network 

administrators. Common, rule-based, monitoring and detection security controls; e.g. Intrusion 

Detection and Prevention System (IDPS), Application Firewalls, Data Loss 

Prevention\Protection (DLP), rely in payload analysis to detect malicious traffic; such as 

connections to Command & Control (C&C) servers, virus spreading or sensitive data exfiltration. 

But attackers have become proficient in using state-of-the-art, of the self or custom encryption 

schemes to bypass such controls1,2. To ensure security and reliability in corporate networks and 

IT infrastructure in general, encrypted traffic analysis can be used [to a certain extend] as 

follows:  

 Administrators can identify what type of network traffic is present, which is helpful in load 

balancing and predicting required network capacity.  

 AI enhanced intrusion detection systems can use encrypted traffic analysis to identify 

questionable network traffic.  

 Sophisticated viruses and botnets employ encryption in their communication with Command 

and Control servers. With the help of encrypted traffic analysis, this communication can be 

identified, and appropriate countermeasures can be employed. 

                                                
1 MITRE ATT&CK technique: Standard Cryptographic Protocol, https://attack.mitre.org/techniques/T1032/, accessed 
November 2019  
2 MITRE ATT&CK technique: Custom Cryptographic Protocol, https://attack.mitre.org/techniques/T1034/, accessed 
November 2019  

One should not 

assume that 

traffic encryption 

can provide 

100% privacy 

protection 

against an 

eavesdropper. 

https://attack.mitre.org/techniques/T1032/
https://attack.mitre.org/techniques/T1034/
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1.1 SCOPE AND OBJECTIVES 

The scope of this report is to examine the main use cases of encrypted traffic analysis and 

analyse how network administrators can use it to extract useful information without access to 

the transferred plaintext payload. It also discusses improper practices in securing network traffic 

using TLS, as well as raises the key issue of malicious encrypted traffic detection. 

In particular, the objective of the study is to present how encrypted traffic analysis can be a 

useful tool for network administrators and security practitioners, but also to identify and describe 

the most dangerous encrypted traffic analysis-based attack vectors. As is often the case in 

cyber security, a tool may be used with and without malicious intent. In this study, we aim to 

present both aspects of encrypted traffic analysis. 

1.2 OUTLINE 

The structure of the report is as follows:  

 Chapter 2 discusses how encryption may negatively impact the security posture of an 

organization by limiting the efficacy of existing security controls. 

 Chapter 3 explores the taxonomy of the approaches to infer information from encrypted 

packet flows. 

 Chapter 4 presents the approaches for application classification in encrypted traffic. 

 Chapter 5 proposes methods to analyse encrypted network traffic to identify user actions. 

 Chapter 6 details threats to user privacy over an encrypted network.  

 Chapter 7 describes the detection of encrypted malware traffic. 

 Chapter 8 analyses ways to infer information, using “fingerprinting”. 

 Chapter 9 discusses DNS tunnelling use case. 

 Chapter 10 provides a summary of available encrypted traffic analysis techniques. 

 Chapter 11 describes improper TLS practices and their impact. 

 Chapter 12 provides a summarization of key findings. 

 Annex A provides a reminder of the Open Systems Interconnection model (OSI model) and a 

very short introduction to Machine Learning. 
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2. CHALLENGES OF 
ENCRYPTION IN SECURITY 

Encryption protocols can provide privacy and security to network communication. By far the 

most popular network traffic encryption protocol is the Transport Layer Security (TLS)3. The goal 

of this protocol is to provide three main features for every connection: confidentiality, 

authentication and message integrity. Confidentiality of a connection prevents anyone from 

reading the contents of the messages, ensuring users’ privacy to a degree. Authentication, 

verifies the identity of the parties communicating. And Message Integrity, provides a way to 

verify that a message has not been modified on the way from the sender to the receiver. 

Nevertheless, encryption of network traffic has its challenges. For example it hinders detection 

of infected devices in a network. When malware uses traffic encryption to hide its activity1,2 it is 

much more difficult to detect this encrypted malicious traffic, as opposed to the detection of 

unencrypted malicious traffic. Other challenges include implementation errors or configuration 

mistakes when deploying encrypted traffic protocols, performance cost of traffic encryption and 

the impact that new technologies [will] have on encrypted traffic. 

2.1 TRAFFIC ANALYSIS 

In general, encryption has a significant impact on detection and analysis of network traffic, 

because it hides all payload data. The fact that all data between a client and server can be 

encrypted practically and economically, is an important progress for our society; as it allows for 

secure [financial] transactions and private communications. On the other hand, encryption 

interferes with the efficacy of classical detection techniques. Finding suspicious patterns in the 

encrypted traffic is much more difficult. In addition, Data Loss Prevention\Protection solutions 

cannot monitor and protect against the unauthorized flow of sensitive data, since there is no 

visible pattern to identify them once encrypted. In fact, many malicious attacks take advantage 

of this, by encrypting data before exfiltrating them and/or encrypting communications between 

Command & Control and targeted systems. The obvious solution is to install TLS inspection 

opening the encrypted traffic with own TLS certificate and detect malicious behaviour in the 

decrypted traffic. However, this would break End-to-End encryption (or to be more accurate 

Client-to-Server encryption) placing trust to the TLS inspection box and all the inspection and 

analysis services accessing the plaintext traffic. Such a scenario might be undesirable, 

especially in instances were sensitive data are transmitted (e.g. financial transactions) and 

network monitoring had been outsourced to third parties (e.g. external Security Operations 

Center (SOC) teams, or subscription/cloud based security monitoring tools). Moreover, by 

unencrypting and examining payload the confidentiality of end users is not respected, especially 

in cases where users are unaware of this practice; either due to lack of technical knowledge or 

because their devices have been silently configured by administrators to trust intermediate 

certificates. 

The main challenge today is to find a balance between end-to-end security, keeping the 

confidentiality of end users, and at the same time gathering valuable information from the traffic 

to detect possible threats and better allocate and protect resources. It is a difficult problem and 

it’s important to identify alternative ways of detecting malicious behaviour that do not decrease 

the confidentiality of users. New technologies and algorithms of Artificial Intelligence and 

                                                
3 IETF News: TLS 1.3, https://ietf.org/blog/tls13/, accessed November 2019  

SSL 2.0 was 

designed in 1995. 

However, due to 

vulnerabilities, a 

more secure SSL 

3.0 was released 
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vulnerability 

found by Google 

security team. 
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of SSL 

technology and 

has 

overshadowed it. 

https://ietf.org/blog/tls13/
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Machine Learning could be a solution, but as we shall see this remains an active field of 

research. 

Figure 1: Timeline of SSL/ TLS Protocols 

 

2.2 DEPLOYING ENCRYPTION PROTOCOLS 

Proper deployment of encryption technology in both client and server applications is another 

important challenge. Following good practices is essential in order to get all the expected 

security and privacy benefits that TLS provides. Mistakes, such as not verifying of the server’s 

certificate or an insecure initiation of TLS communication, undermine the protocol’s features and 

create easily exploited vulnerabilities. The fact that even with these omissions the protocol is still 

in place, creates a false sense of security. Since the network traffic is still encrypted, but easily 

observable or modifiable. This topic is addressed in a chapter 11.3 Proper TLS practices, which 

describes the impact of such faults. 

2.3 PERFORMANCE OF ENCRYPTION PROTOCOLS 

Encrypting network traffic is an additional task, which increases time delay when 

communicating. The speed of such communication is therefore decreased. Using TLS and other 

security protocols also consumes computing power both for encryption and decryption during 

the handshake part. This motivates developers of applications to communicate data using 

HTTP and only check the integrity of the data transmitted; hopefully having first established that 

confidentiality is not of concern. 

However, the use of HTTP is still a problem. Even when the integrity check is performed, there 

is usually important information about the given application revealed, which a potential attacker 

might use to attack the given device. To that extend, improvements have been made to the 

newest TLS version, TLS 1.3, which increase the speed of the TLS handshake. Not to mention 

that with new, faster and more powerful processing technologies, the performance impact 

should be negligible. In any case, the decrease in speed and the need for additional operations 

are well worth, considering the features that [a properly] TLS provides, and we could only 

envision conditions of resource restrained systems that might opt for speed-optimized 

alternatives. 

In the figure dole there is comparison of handshakes between the most popular TLS 1.2 

protocol and the latest TLS 1.3 protocol. As shown in Figure 2: Comparison of handshakes in 

TLS 1.2 and TLS 1.3, the handshake of TLS 1.3 is faster, and this slight improvement will have 

an essential impact for daily global internet traffic as it becomes more popular. 
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Figure 2: Comparison of handshakes in TLS 1.2 and TLS 1.34 

 

2.4 IMPACT OF NEW TECHNOLOGIES 

The quick evolution of networking technologies has an impact on TLS and other encryption 

protocols. In the past, one of the reasons new encryption algorithms had to be introduced was 

the increase in computing power, which enabled for more effective attacks on short encryption 

keys. Similar scenarios can happen in the future, for example, a breakthrough invention in 

quantum computing would add unique possibilities in attacking TLS, which would force this 

protocol to adapt. It is dangerous not to pay attention to new trends and technologies as past 

solutions become vulnerable and easier to exploit. It is therefore essential to be able to stay up 

to date and adapt in this constantly evolving landscape. 

To help mitigate these future threats, it is necessary for developers to be prepared to react 

quickly. This requires designing software that is adaptable to these changes and developing it in 

a way that enables addressing security incidents as fast as possible. Designing a software 

without considering future exploits and vulnerabilities, is dangerous and may compromise the 

security of the system. Security by design and Privacy by design should be augmented should 

incorporate preparedness and adaptability. 

                                                
4 Source: https://kinsta.com/blog/tls-1-3/, accessed November 2019 

https://kinsta.com/blog/tls-1-3/


ENCRYPTED TRAFFIC ANALYSIS 
November 2019 

 
12 

 

3. TAXONOMY OF ENCRYPTED 
TRAFFIC ANALYSIS 

It is, often highly desirable to infer information such as application protocol, transferred files etc. 

from an encrypted packet flow. Using a variety of techniques, this is possible to some extent. In 

this section, we will give a short taxonomy of the approaches available. This taxonomy has 

been introduced by (Khalife, Hajjar, and Diaz-Verdejo 2014). 

Encrypted Traffic Analysis may be characterized by the following properties.  

1. Its goals and purpose. 

2. The way it extracts information from the encrypted packet. 

3. The way it processes this information to derive desired information.  

In the following paragraph, we detail these properties.  

1. Goals. There is no single goal of encrypted traffic analysis; rather, there are many 

different use cases, for example Traffic Clustering, Application Type and Protocol 

Classification, Anomaly Detection or File Identification.  

2. Information extraction. There are several ways information is extracted from 

encrypted packets. Information may be extracted either by 

 observing behavioural properties (e.g. the round trip time, number of packets 

sent)  

 observing the encrypted payload itself  

 observing additional information such as protocol handshakes (e.g. TLS 

handshake)  

3. Information processing. The information gained during information extraction has to 

be processed to derive the desired classification result. This processing can be very 

basic (by using heuristics, profiles or simple statistical means) or very complex (data-

driven / machine-learning). Choosing the right processing depends a lot on the goal 

and the information available and is an active field of research in its own right. 

Considering the vast amount of existing algorithms, we can only present the general 

approach and defer the introduction of specific algorithms to the following sections, 

where we examine specific use cases of encrypted traffic analysis. 

We will examine these methods in more detail in the following subsections. For now, we turn our 

attention to the process of feature extraction, a requirement for subsequent application of 

statistical methods. 

Features are 

atomic 

observable 

properties of a 

given network 

flow or packet. In 

encrypted traffic, 

these features 

may be obtained 

from either the 

header of a 

packet, 

properties of the 

unencrypted 

handshake, by 

observing 

statistical 

properties such 

as the round-

trip-time (RTT) or 

even from the 

encrypted data 

itself (via byte-

patterns). 
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3.1 FEATURE EXTRACTION TAXONOMY 

As listed above, there are three approaches to extract features from network flows: Observing 

traffic properties, deriving information from the encrypted packet itself and extracting 

supplementary information such as protocol handshake properties (Khalife, Hajjar, and Diaz-

Verdejo 2014). We will now shortly introduce and explain these approaches. 

Behavioural feature extraction. As described above, this approach consists of observing how 

the traffic ‘behaves’ and modelling this information into features. (Moore et al. 2005) list over 

240 features which can be extracted from any given flow using statistical means. They extract 

features from the TCP protocol, which makes their approach widely applicable. Some of the 

most interesting features include: Inter-arrival-time, packet-length, number of ACK packets 

observed, number of retransmissions, round trip time and corresponding mean, variance, 0.25 

and 0.75 quantile for these features. 

Figure 3: Promising features for modelling traffic behaviour 

 

Feature extraction from data payload. Features may also be constructed directly of the 

packet payload. This approach has its origin in unencrypted traffic analysis, where regular 

expressions and signature matching are commonly used to infer information. However, some of 

the tools used for unencrypted traffic analysis may also be used for encrypted traffic analysis. 

(Velan et al. 2015) present surveys of tools for encrypted traffic analysis and find that while most 

tools for traffic analysis are designed to work on unencrypted data, a few of them manage to 

generalize to encrypted data as well. For example, they report studies which find the 

libprotoident tool5 to be suitable for encrypted protocol analysis. 

Another approach to feature extraction from payload data is neural networks, a machine 

learning method which has gained considerable traction during the past few years. Neural 

Networks may take in bytes as input and are able to infer information from this directly. There is 

no need for manual feature engineering. This method has been shown to work well for 

unencrypted data (Schneider and Böttinger 2018), but also for encrypted traffic (Wang et al. 

2017). 

Another interesting approach is presented by (Sherry et al. 2015), who introduce a new protocol 

and encryption scheme called ‘BlindBox’ which aims to strike a balance between enabling deep 

packet inspection, while at the same time maintaining user privacy by encrypting the traffic. 

While this is an interesting concept, BlindBox requires both client and user to use their proposed 

protocol suite and will not work on standard SSL/TLS. 

                                                
5 libprotoident, The University of Waikato, Hamilton, New Zealand, https://github.com/wanduow/libprotoident, accessed 
November 2019  

https://github.com/wanduow/libprotoident
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Feature extraction from supplementary information sources. Information may also be 

extracted from information not present in the data packets themselves, but in the auxiliary 

packets present in a data flow, for instance by observing the TLS handshake or the X.509 

certificate exchange. For example, it is possible to perform client fingerprinting based on the 

initial SSL/TLS handshake6. SSLBL7 is a project dedicated to “detecting malicious SSL 

connections, by identifying and blacklisting SSL certificates used by botnet C&C servers”. 

Having seen how features may be extracted from encrypted traffic, we now turn our attention to 

specific use cases, where we will show how feature extraction and information processing work 

in conjunction. 

                                                
6 Qualys SSL Labs - Projects. “HTTP Client Fingerprinting Using SSL Handshake Analysis, 
https://www.ssllabs.com/projects/client-fingerprinting/, accessed November 2019  
7 SSLBL | Detecting Malicious SSL Connections, https://sslbl.abuse.ch/, accessed November 2019  

https://www.ssllabs.com/projects/client-fingerprinting/
https://sslbl.abuse.ch/
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4. ENCRYPTED TRAFFIC 
ANALYSIS USE CASE: 
APPLICATION IDENTIFICATION 

4.1 PROBLEM DESCRIPTION 

Identifying and classifying traffic according to ISO/OSI layer-7 application offers substantial 

benefits in areas such as IT security, network maintenance, quality of service and business 

intelligence. For example, this allows a company to use dynamic access control to restrict 

unauthorized applications, such as using peer-to-peer file-sharing. Another use case is trend 

analysis, where forecasting network demands is facilitated by matching network traffic to 

application. 

In unencrypted traffic, several techniques can be employed to perform application identification. 

(Zander, Nguyen, and Armitage 2005) identify the following different approaches: Identification 

via port number, stateful reconstruction of session and application information from the packet 

content and finally data driven / statistical methods. In the following paragraph, we will briefly 

discuss these approaches. We shall see their limitations with respect to encrypted traffic and 

motivate the use of data driven and statistical methods for application classification in encrypted 

traffic. 

Application protocol identification is most commonly done by port number. There are several 

lists of port numbers used by some of the most popular applications; e.g. “Common Application 

Ports - Bandwidth Controller”8. For example, port 80 is used by browsers and the HTTP 

protocol, 443 for secure web browsing (HTTPS) and port 4000 for ICQ. Classifying traffic by port 

number is, however, infeasible in today’s World Wide Web. Many applications have no strongly 

defined ports or use dynamically allocated ports. When several servers share a common IP 

address, the same port cannot be used by two servers at a time, so a different port must used. 

Moreover, a user may deliberately change the port of their application to bypass port-based 

detection (Zander, Nguyen, and Armitage 2005) or even malware designers may employ “a 

commonly used port to bypass firewalls or network detection systems and to blend with normal 

network activity to avoid more detailed inspection”9. 

Stateful reconstruction methods work by listening in on the network traffic, inspecting its 

contents, reconstructing them and matching them against a data base of application traffic 

schematics. This can obviously not be done when the traffic is encrypted. 

Data driven methods work by applying statistical or machine-learning based methods to classify 

traffic based on features extracted from the network flow. The accuracy of such methods is 

extremely dependent on a) the quality of the data set and b) the features. Features may be 

extracted from both unencrypted and encrypted traffic (from either the unencrypted handshake, 

header statistics, packet entropy, etc.) This makes statistical methods a suitable candidate for 

application identification in encrypted traffic. 

                                                
8 Bandwidth Controller: Common Application Ports, http://bandwidthcontroller.com/applicationPorts.html, accessed 
November 2019  
9 MITRE ATT&CK technique: Commonly Used Port, https://attack.mitre.org/techniques/T1043/, accessed November 2019  
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In the following section, we give an overview over such methods and detail their applicability to 

application and application protocol identification. 

4.2 DATA DRIVEN METHODS FOR APPLICATION PROTOCOL 

CLASSIFICATION 

In this section we present work which applies statistical methods for application protocol 

classification, using behavioural features as presented in (Moore et al. 2005). All of the following 

work use data driven methods to perform protocol classification: These methods first acquire 

some data set of flows, extract behavioural features and train a machine-learning algorithm on 

the data. When surveying literature for application protocol identification, this is the prevalent in 

state-of-the-art approach.  

(Sun et al. 2010) employ statistical traffic analysis for application protocol classification. They 

use behavioural features and employ Naïve Bayes to classify flows of encrypted traffic as either 

HTTPS or TOR. While they do report high precision and recall (> 0.92), their evaluation is 

limited in that it considers only TOR vs. HTTPS traffic. 

(Erman, Arlitt, and Mahanti 2006) perform application protocol classification by clustering 

algorithms, which is a specific sort of machine-learning algorithms which try to find group 

instances based on some notion of ‘similarity’. The authors reference (Zander, Nguyen, and 

Armitage 2005) when describing their feature extraction mechanism and use these features to 

train both a K-Means Clustering, DBSCAN Clustering and AutoClass on the publicly available 

Auckland IV and Calgary dataset. While the results for K-Means and DBSCAN are mediocre 

(.84 accuracy after hyper parameter turning), AutoClass achieves better accuracy of .92. In 

summary, the authors show that application protocols such as DNS, FTP, HTTP, IRC, some 

P2P file sharing etc. may be distinguished using feature-based machine learning with 

reasonable accuracy. 

(Bar - Yanai et al. 2010) present a clustering based classifier, where they collect and (semi-

automatically) label a data set consisting out of 12 Million flows. They extract behavioural 

features from this data and train a hybrid 𝑘-means / 𝑘𝑛𝑛 model on their data. They are able to 

identify HTTP, SMTP, POP3, SKYPE, Edonkey and encrypted BitTorrent with high accuracy (> 

.94) and note that their algorithm is resistant to encryption. 

Finally, (Wang et al. 2017) present an end-to-end approach to encrypted traffic classification 

using convolutional neural networks. This approach differs from the approaches above in that it 

does not perform manual feature extraction by first computing behavioural statistics such as 

round trip rime etc., but uses one-dimensional convolution neural networks to directly extract 

features from the raw traffic. These networks are most prominently used in computer vision 

tasks, but also gain traction in other fields such as natural language processing and information 

security. Convolutional networks work by sliding a ‘kernel’ over the input (which in this case is 

the raw, encrypted traffic), thus extracting contextual information which standard feed-forward 

networks fail to capture. The authors evaluate their approach on the ISCX VPN traffic data set 

and report precision and recall ranging between 0.7 and 0.95 when identifying Streaming, VoIP, 

Chat and Email within encrypted traffic. 
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Figure 4: Data driven methods for application protocol classification 

 

 

 

 

 

4.3 DATA DRIVEN METHODS FOR APPLICATION TYPE CLASSIFICATION 

Closely related to application protocol classification is application type classification. The former 

identifies protocols such as HTTP or SSH, while the latter identifies individual applications (such 

as Skype or Google Talk). The methodology for application type classification remains largely 

the same as for application protocol classification: State-of-the-art extracts behavioural features 

from a data set of flows and employs data-driven methods to perform classification. In the 

following paragraph, we present such work. 

(Alshammari and Zincir-Heywood 2009) provide a comparison between five machine-learning 

based classifiers (Adaboost10, SVM11, Naïve Bayes12, RIPPER13 and C4.514) for identifying 

SKYPE and SSH in encrypted network traffic. They choose features such as number of packets, 

inter arrival time and mean packet length and evaluate their approach on four data sets. They 

achieve high detection rate (.98) when detecting skype traffic, with an acceptable false positive 

rate (.07).  

(Alshammari and Zincir-Heywood 2010) extend work from (Alshammari and Zincir-Heywood 

2009) and map application protocol classification techniques to application type identification. 

Using similar classifiers (in both bases, the C4.5 algorithm is found to have superior 

performance), they show that Skype and Gtalk traffic can be reliably identified (true positive rate 

> .99, false positive rate < .02) within a data set containing FTP, SSH, MAIL, HTTP, HTTPS and 

MSN traffic. 

A refreshing take on application identification is presented by (Taylor et al. 2018). The authors 

shift their attention to the identification of smartphone applications. The presence or absence of 

applications can reveal much information about the user (sexual orientation, health, religious 

believes). Even though these applications encrypt their communication using TLS/SSL, passive 

fingerprinting of behavioural traffic properties is enough to adequately detect application traffic 

in encrypted flows. The authors fingerprint 110 of the most popular Google Play Store Apps and 

classify them, six months later, with accuracy ranging between .66 and .73. They use 

behavioural features as presented in (Moore et al. 2005), plus packet timing and co-occurrence 

information and interact with the application using UI fuzzing (e.g. they use scripts to interact 

with the application in an automated way in order to generate the traffic). IP addresses were 

used only for flow separation and not for identifying the application itself (since IP addresses are 

likely to change during the lifetime of an application). In the following section we will discuss 

more efforts to determine active applications in a mobile device. 

                                                
10 Adaptive Boosting, https://en.wikipedia.org/wiki/AdaBoost, accessed November 2019 
11 Support-vector machine, https://en.wikipedia.org/wiki/Support-vector_machine, accessed November 2019 
12 Naive Bayes classifier, https://en.wikipedia.org/wiki/Naive_Bayes_classifier, accessed November 2019 
13 Repeated incremental pruning to produce error reduction, an optimized version of IREP proposed by William W. Cohen, 
http://www.csee.usf.edu/~lohall/dm/ripper.pdf, accessed November 2019 
14 C4.5 algorithm, https://en.wikipedia.org/wiki/C4.5_algorithm, accessed November 2019 

https://en.wikipedia.org/wiki/AdaBoost
https://en.wikipedia.org/wiki/Support-vector_machine
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
http://www.csee.usf.edu/~lohall/dm/ripper.pdf
https://en.wikipedia.org/wiki/C4.5_algorithm
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4.4 APPLICATION IDENTIFICATION RECOMMENDATIONS  

 Motivate the use of data driven and statistical methods for application classification in 

encrypted traffic 

 Statistical methods are a suitable candidate for application identification in encrypted 

traffic 
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5. ENCRYPTED TRAFFIC 
ANALYSIS USE CASE:  
NETWORK ANALYTICS 

5.1 APPLICATION CLASSIFICATION 

BLINC was one of the pioneer papers that aimed to classify the network traffic in the dark, 

having no access to packet payload, no knowledge of port numbers and no additional 

information other than what current flow collectors provide, solely based on the host behavioural 

patterns (Karagiannis et al, 2005). (Wang et al., 2015) taking advantage of the fact that mobile 

applications produce more identifiable traffic patterns, perform a packet-level analysis to 

determine what applications a single individual is using, exploiting numerous side-channel 

information (e.g. traffic flow bursts) that are leaked through network traffic from mobile devices. 

AppScanner enables automatic fingerprinting of Android applications through encrypted traffic. 

To generate app fingerprints, the authors run apps automatically on a physical device to collect 

their network traces. The application classification is conducted using a supervised learning 

algorithm that is fed with features that are exported through the collection of network traces 

(Taylor et al., 2016). (Bernaille et al., 2007) propose a method to detect applications in SSL 

encrypted connections, taking advantage of the size of the first few packets of an SSL 

connection to recognise the application. Winter et al. present how the Great Firewall of China is 

able to identify and block Tor traffic, by dropping connections to certain ip:port tuples for a 

period of time or by examining the protocol (TOR traffic can be distinguished by inspecting the 

“TLS client/server hello'” messages) (Winter et al. 2012). 

5.2 APPLICATION USAGE CLASSIFICATION 

The works in this section present fine-grained application event identification over encrypted 

traffic and clearly motivate the feasibility of traffic analysis, often with the use of machine 

learning techniques. (Coull et al.,2014 ) proposed a method for traffic analysis of encrypted 

messaging services. Specifically, they show that an eavesdropper can learn information about 

user actions inside an application, the language and the size of the messages exchanged. 

(Conti et al., 2015) proposed a system to analyse encrypted network traffic to identify user 

actions on Android devices, such as email exchange, interactions over social network, etc. Their 

framework leverages information that is available in TCP/IP packets, like IP addresses and 

ports, along with other features, like packet size, direction and timing. NetScope is a work that 

performs robust inference of users' activities, for both Android and iOS devices, based on 

inspecting IP headers. Its main purpose is to demonstrate that a passive eavesdropper is 

capable of identifying fine grained user activities within the wireless network traffic (even 

encrypted) generated by applications (Saltaformaggio et al., 2016). OTTer is a scalable engine 

that identifies fine-grained user actions, like voice/video calls or messaging, in Over-The-Top 

(OTT) mobile applications, such as WhatsApp and Skype, even in encrypted network traffic 

connections (Papadogiannaki et al., 2018). 

5.2.1 VoIP Conversation Decoding 

Others used traffic analysis to extract voice information from encrypted VoIP conversations. For 

example, (Wright et al., 2008) showed that when the audio is encoded using variable bit rate 

codecs, the lengths of encrypted VoIP packets can be used to identify phrases spoken within a 

call with high accuracy. 
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6. ENCRYPTED TRAFFIC 
ANALYSIS USE CASE: 
USER INFORMATION 
IDENTIFICATION 

In the preceding chapters, several threats to user privacy by means of encrypted traffic analysis 

have been presented. In this chapter, we identify and detail further risks to user privacy when 

surfing the Internet over an encrypted channel. 

6.1 IDENTIFY USERS’ OPERATING SYSTEM, BROWSER AND 

APPLICATION 

(Muehlstein et al. 2017) present an approach to identify a user's operating system, browser and 

their applications observing only the encrypted HTTPS traffic. Again, the authors exploit traffic 

characteristics similar to the ones presented in (Moore et al. 2005). In addition, they present 

new features which observe bursty behaviour of the browser, for example the silence before 

and after a transmission. The authors perform extensive experiments and present a data set of 

20,000 incenses, which consists of traffic collected over 4 operating systems and 5 applications. 

Using this extended feature set, they can identify a user's operating system, browser and 

application with .96 accuracy.  

Even though there are much more versions and flavours of operating systems, browsers and 

applications than they capture in their data set (and thus the real-world implications may be 

limited) the authors show that it is possible to extract private and sensitive information about the 

user’s browser set up from encrypted traffic only. 
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7. ENCRYPTED TRAFFIC 
ANALYSIS USE CASE: 
DETECTION OF ENCRYPTED 
MALWARE TRAFFIC 

Malware behaviour is as old as the internet. From this historical perspective, the competition 

between malware creators and defenders of companies, governments and ordinary users keeps 

malware constantly changing and evolving. With the growing usage of the Internet and its 

increasing importance for our daily lives, security plays a more profound and essential role than 

ever before. While security companies have developed methods to protect users against 

attackers, many challenges keep making this task difficult to achieve in real life. One of the most 

important challenges in security is encryption of the internet traffic, as it requires a fine balance 

between respecting the privacy of users as much as possible and at the same time gathering 

data from the traffic for detecting malicious behaviour with the best accuracy. This problem 

opens the doors for new approaches and methods of Artificial Intelligence. 

7.1 THE INCREASE OF HTTPS TRAFFIC 

The most known and used protocol for the encryption of internet traffic is TLS (Transport Layer 

Security). TLS is most commonly used to encrypt the content of HTTP protocol. HTTPS protocol 

or HTTP Secure or Hypertext Transfer Protocol over TLS, is the standard for secure 

communications on the Internet and is dominantly used in any computer networks.  

According to a Google report from April 202015 the usage of HTTPS is increasing and it is 

currently around 78-96% of loaded HTTPS web pages by the Chrome browser depending on 

the operating system (Windows, Android, Chrome, Linux, Mac). The report shows that Windows 

users using Chrome browser load almost 87% of visited websites over HTTPS, while Mac users 

load almost 93% and Linux users 78%. 

  

                                                
15 Google Transparency Report, HTTPS encryption on the web, https://transparencyreport.google.com/https/overview, 
accessed April 2020  

https://transparencyreport.google.com/https/overview
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Figure 5: Google report from April 202015 

 

In March 2020, the Let’s Encrypt certificate authority reported16 that from all observed countries, 

an average of 83% of websites loaded by Firefox browser were encrypted.  

Figure 6: Percentage of Web Pages Loaded by Firefox Using HTTPS16 

 

There is an ongoing effort from global market actors, security organizations 

and authorities to increase the usage of HTTPS protocol to keep internet 

browsing safe by securely connecting browsers or applications with websites. 

Thereby the evolution and future perspective of HTTPS protocol as a way of 

encrypting traffic is expected to continue.  

With this increasing amount of encrypted network traffic on the internet, 

malware has also started to use encryption to secure its own communication. 

In 2019 a report from Cisco17 stated that more than 70% of malware campaigns 

in 2020 will use some type of encryption to conceal malware behaviour. It is important to realize 

                                                
16 Let's Encrypt Stats, Percentage of Web Pages Loaded by Firefox Using HTTPS, https://letsencrypt.org/stats/, accessed 
March 2020  
17 Cisco Encrypted Traffic Analytics, https://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-networks/enterprise-
network-security/nb-09-encrytd-traf-anlytcs-wp-cte-en.pdf, accessed November 2019  

https://letsencrypt.org/stats/
https://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-networks/enterprise-network-security/nb-09-encrytd-traf-anlytcs-wp-cte-en.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-networks/enterprise-network-security/nb-09-encrytd-traf-anlytcs-wp-cte-en.pdf
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that “some type of encryption” doesn’t have to be only HTTPS (TLS), it could also refer to other 

protocols (IPSec) or even custom encryption schemes. 

As far as malware using HTTPS for encryption are concerned, it is hard to get a true estimate. 

In 201618, Cisco reported around 10-12% of malicious communication using HTTPS and in 

2017, Cyren19 claimed that 37% of malware was using HTTPS. Although these estimations 

vary, it is safe to assume that there is an increase of encryption and HTTPS usage for the 

concealment of malware communication.  

7.2 PROBLEM STATEMENT 

The detection of malware traffic, which is not encrypted, is not a simple task, because even 

though all data are visible in the unencrypted traffic, it does not mean that all malicious 

behaviour can be detected there. The reason is simple: the attackers still come up with new 

types of attacks and malicious behaviour is still dynamically changing in contrast with other 

Machine Learning tasks, where targeted objects (e.g. images of humans, English sentences) do 

not change so much during our lives.  

In general, the problem of malware traffic detection is a very difficult one from Machine Learning 

point of view. However, the detection of encrypted malware traffic compared to unencrypted 

traffic detection is a much harder problem, because all payload data of the traffic is hidden, due 

to encryption. In such cases, detection with high accuracy, low false positive and false negative 

rates is a challenge for the whole community. 

7.3 INSPECTION SOLUTION 

A possible solution for dealing with malware HTTPS traffic in companies and organizations is to 

install HTTPS interceptor proxies (aka middleboxes, TLS interception etc.) These hardware 

servers can open and inspect the HTTPS traffic of the employees by installing a special 

certificate in their computers. The HTTPS interceptor is placed between the client and the 

server, where the encrypted traffic is decrypted, scanned for malicious software, encrypted 

again and sent to the destination IP. This approach allows to use classic detection methods for 

detecting unencrypted malware traffic and it is a significant simplification of the problem.  

However, there are few critical disadvantages. The first one is that it requires powerful 

hardware, because decryption and re-encryption of traffic without introducing noticeable delays 

is computationally demanding. The second disadvantage is that opening the traffic does not 

respect the original idea of HTTPS which is to have a private and secure communication 

throughout the channel.  

On December 2019, National Security Agency (NSA) published a report20 describing a potential 

risk from the improper usage of TLS inspection (TLSI). Claiming that “network owners should be 

aware that TLSI is not a cure-all" and there should be a big effort to set TLS Inspection properly. 

Otherwise the network can become more vulnerable and dangerous with TLS Inspection than 

without it. 

In addition, we should bear in mind that HTTPS protocol is not the only way of encrypting 

malware traffic. According to a 2019 report from Cisco17, in 2020 up to 60% of all companies 

                                                
18 Cisco, Hiding in Plain Sight: Malware’s Use of TLS and Encryption, https://blogs.cisco.com/security/malwares-use-of-tls-
and-encryption, accessed November 2019  
19 Cyren Security Blog, Malware is Moving Heavily to HTTPS, https://www.cyren.com/blog/articles/over-one-third-of-
malware-uses-https, accessed November 2019  
20 National Security Agency - Managing risk from transport layer security inspection, 
https://media.defense.gov/2019/Dec/16/2002225460/-1/-1/0/INFO SHEET MANAGING RISK FROM TRANSPORT LAYER 
SECURITY INSPECTION.PDF, accessed November 2019  

https://blogs.cisco.com/security/malwares-use-of-tls-and-encryption
https://blogs.cisco.com/security/malwares-use-of-tls-and-encryption
https://www.cyren.com/blog/articles/over-one-third-of-malware-uses-https
https://www.cyren.com/blog/articles/over-one-third-of-malware-uses-https
https://media.defense.gov/2019/Dec/16/2002225460/-1/-1/0/INFO%20SHEET%20%20MANAGING%20RISK%20FROM%20TRANSPORT%20LAYER%20SECURITY%20INSPECTION.PDF
https://media.defense.gov/2019/Dec/16/2002225460/-1/-1/0/INFO%20SHEET%20%20MANAGING%20RISK%20FROM%20TRANSPORT%20LAYER%20SECURITY%20INSPECTION.PDF
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using the inspection of traffic will fail to decrypt and identify malicious encrypted traffic due to 

adversaries employing custom encryption techniques. (see also ch. 10.4 dole) 

7.4 A SOLUTION NOT REQUIRING DECRYPTION 

As already mentioned, detection of encrypted malware behaviour is much more challenging 

compared to detection of malware in unencrypted traffic despite the fact there is relevant 

research with interesting results claiming the opposite:  

 Learning communication patterns for malware discovery in HTTPs data (Kohout et al., 2018) 

 Deciphering Malware's use of TLS (without Decryption) (Anderson et al., 2016)  

 Detection of HTTPS Malware Traffic (Střasák , 2017) 

One of the main tools used to detect encrypted malware traffic is Machine Learning. Employing 

ML algorithms requires us to choose appropriate features to analyse and a suitable data 

representation.  

7.4.1 Features to detect malware with ML 

Regarding features to detect malware using the HTTPS (TLS) protocol, there are a few 

important aspects to consider. The most valuable features are coming from the server's 

certificate. The purpose of the TLS certificate is to encrypt the traffic and prove the authenticity 

of the server, so the traffic is not only encrypted but also includes information proving the 

ownership of a public key in the certificate. 

The first feature telling us something valuable about the HTTPS traffic is the validity length of 

the certificate. Each certificate is valid for a specified period. If the certificate has expired or if it 

is used before the commencement of its validity period can be an indication that something is 

potentially malicious. However, a short validity period of a certificate is not suspicious in itself.  

The next interesting piece of information from the TLS certificate is the Subject Alternate Name 

(SAN) domains. This field contains at least one hostname however it can be valid for multiple 

ones. The number of hostnames and which hostnames are there can be useful for a later 

evaluation stage.  

Each end-user certificate (the certificate the server sends to the client) should be issued by 

trusted Certificate Authorities (CA) that enable the end-user to verify that the server and all CA's 

are trustful. This process is called certificate chain and it is a critical part of HTTPS handshake. 

The number of certificate authorities in the chain and its domains are interesting information. 

However, some certificates can be self-signed which means that there is no certification 

authority and the certificate is signed by the same individual whose identity it certifies. This 

information can contribute to the final decision of malicious behaviour.  

There are a lot of other features from the certificate and TLS handshake such as a version of 

TLS, signature algorithm, key type, etc. However, from August 2018 version 1.3 of the TLS 

protocol was defined in RFC 8446. TLS 1.3 has started to be used and deployed massively. 

The main difference between TLS 1.3 and previous versions of TLS (TLS 1.2, 1.1, 1.0, SSL 3.0, 

2.0, and 1.0) is that TLS 1.3 is faster and safer and that is very good news from the end user 

point of view. The drawback is that the certificate is now encrypted inside the HTTPS traffic. 

Hence feature extraction from certificates, which was a very useful way of identifying malicious 

traffic, can no longer be used. So, while TLS 1.3 is a step in the right direction for the Internet 

and it is very good to use from a user perspective, it invalidates existing techniques making 

detection of malicious behaviour harder.  

At this moment the most used version of TLS is still version 1.2, which does not encrypt the 

certificate, but in the following years the usage of TLS 1.3 is expected to eclipse past versions. 
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Losing access to TLS certificate features due to the introduction of TLS 1.3 can be mitigated by 

downloading the certificate for the observed traffic separately. Another solution is to rely only on 

features from the TCP layer such as the transferred number of packets and bytes between the 

client and server, the state of connection and the periodicity of packets or network flows. 

Whether or not these low-level features are enough for the detection of malicious encrypted 

traffic depends on many factors; e.g. what we want to detect, how much data we have, how well 

we understand the problem, which types of malware we want to detect, etc. However, another 

potential huge advantage of this approach is that we do not care about the type of encryption 

that the given malware uses.  

7.4.2 Representation of data for ML 

To detect any type of malware behaviour by Machine Learning, the first step and one of the 

biggest challenges is data. Of course, there are a lot of public and prepared datasets for a wide 

variety of tasks such as computer vision, natural language processing or speech recognition. 

However as far as public datasets for Malware traffic detection tasks, there are only a few of 

them. One of the public and available datasets for Malware traffic analysis is Malware Capture 

Facility Project21 that contains a wide choice of Malware captures for last years.  

In the case of generating a new dataset, the first step is to realize that the entire process can be 

expensive and time consuming, because it is necessary to generate enough traffic for the 

following research. It is also important to define at the beginning if the research will be focused 

on binary classification (Malware and Normal traffic) or classification of malware families (RAT, 

Trojan, etc.) for clear labelling of samples.  

When the dataset is ready to use it is important to select suitable representation of samples for 

ML algorithms. There are plenty of possibilities and there is no best option in general, because it 

depends on the size of dataset and selected Machine Learning algorithm. 

Examples of a sample for ML: 

 Gathered all flows with the same source IP, destination IP, destination port, protocol 

 Gathered all flows going in and out from one IP  

For each sample from the dataset the features must be defined and computed. For example, in 

case of grouped flows with the same source IP, destination IP, destination port and protocol as 

a sample for ML, the features can be for example: mean of duration of flows, mean of 

transferred bytes between client and server, standard deviation of transferred packets between 

a client and server and so on. This is an area that is very important for future research. There is 

also a need to understand the traffic to identify which information from it is significant and which 

can be represented as the features for the new machine learning task. 

Having defined the representation of samples and since the size of dataset is known and we 

also defined what we want to detect, it is time to select a Machine Learning method and 

algorithm. It is also good to analyse the data with some statistical tests to get an idea which 

features from your data are beneficial and which not. 

Nowadays there are 2 main ways to use ML algorithms for data analysis. There are Classical 

Machine Learning methods and Deep Learning methods. Both have disadvantages and 

advantages for detection of malware behaviour. 

                                                
21 Malware Capture Facility Project https://www.stratosphereips.org/datasets-malware, accessed November 2019  

https://www.stratosphereips.org/datasets-malware
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For the classical ML approaches, the main concentration is directed towards high level features 

and expected patterns in internet traffic. The key to choosing essential features is to understand 

the traffic and compute high level features such as averages, standard deviations, etc. The 

advantages of this approach are that dataset does not have to be so large for training the model 

and the time for training is much shorter than in Deep learning scenario. There is also another 

interesting advantage about choosing this kind of features, because if the model does not work 

as excepted, the features can be changed very easily. 

As far as Deep Learning approaches a large dataset and enough computational power is 

required. In this case it is better to choose low-level features instead of computing high level 

features such as means and standard deviations of samples. With the right representation of 

samples and with big enough dataset, the Deep Learning techniques can achieve better results 

than Classical ML approaches. 

Every task is very specific and there is no defined procedure to select the right algorithm and 

correct representation of samples with features to achieve the best results. It is a difficult part of 

research and it requires time and knowledge to have a valuable detection system using 

Machine Learning systems.  

To conclude, detection of encrypted malware traffic is a difficult area from Machine Learning 

point of view and the encryption exacerbates this problem. Furthermore, this challenge is 

escalated given the recent release of TLS 1.3 standard in 2018 that encrypts most of available 

information that were available in the older TLS protocols. The promising answer to the cyber 

security challenges of the beginning of the 21st century is Artificial Intelligence. These modern 

approaches help us automate the detection of malicious behaviour and at the same time 

respect the privacy of users as much as possible. 
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8. ENCRYPTED TRAFFIC 
ANALYSIS USE CASE: 
FINGERPRINTING 

8.1 PROBLEM DESCRIPTION 

When users browse the internet, many websites default to HTTPS, where the HTTP traffic is 

encrypted using TLS/SSL. While it is possible to infer the website they’re surfing to by 

eavesdropping DNS requests or simply by observing the destination IP, a more granular 

analysis of a user’s behaviour on the website is obscured by the encryption. For example, which 

sub-page, files or video clips are requested by the user cannot generally be inferred by 

observing DNS requests or IP headers. All an eavesdropper can observe are encrypted 

packets, destined to a given IP address. This ensures the user’s privacy. A user’s website traffic 

may reveal sensitive information such as sexual orientation, religious believes or medical 

information and must thus remain confidential. 

There are, however, ways to infer which web pages, file, songs or videos were requested by a 

user, even if the traffic is encrypted. Observing certain properties of the encrypted data, it is 

possible to create data records which map these properties to the corresponding files or 

websites. This is termed ‘fingerprinting’. Given a corresponding data base of fingerprints, it is 

possible to find a match in the database of fingerprints and thus perform file or website 

identification even on encrypted traffic. In the following sections, we present work which uses 

variants of the above approach to perform file classification on encrypted traffic. 

8.2 FILE FINGERPRINTING 

In file fingerprinting, the goal is to identify which files (images, audio, video) are currently being 

transmitted over an encrypted channel. A popular approach to this problem is to observe the 

entropy of data packets. Entropy is the average amount of information given some stochastic 

source of data. For example, when tossing a fair coin, the Shannon entropy is 1 bit, since each 

coin toss yields one bit of information (either 0 or 1). Now suppose the coin is rigged and always 

yields heads. The corresponding Shannon entropy is 0 bit, since no information is gained by 

observing a toss. Coins with non-equiprobable outcomes thus have a Shannon entropy 

between 0 and 1 bit. Thus, the associated entropy can be understood as a ‘fingerprint’ of a coin. 

When observing enough tosses, we may estimate the entropy from the resulting distribution and 

thus find a mapping between entropy and coin. The same goes for network and file 

identification: When observing a given file, we may calculate its entropy by means of some 

stochastic property observable from the encrypted packets.  

(Böttinger, Schuster, and Eckert 2015) use such an entropy based approach to file 

identification. The authors are able to estimate the entropy of the file being transmitted by 

exploiting file compression in TLS. Their approach is as follows: When a file is being transmitted 

via TLS, the file is split up into fragments of 214 bytes. These fragments are then compressed 

using some compression algorithm negotiated during the TLS handshake, and then the 

compressed fragments are encrypted and sent over the medium. Thus, a given file is split into n 

parts, where each part (except the last) is of length 214 bytes and where each part has size 𝐶𝑛 

after compression and encryption. This allows the authors to obtain a distribution of the file’s 

entropy. This is because segments with high entropy contain more information, where 

compression cannot work as effectively, thus resulting in a larger file size. Thus, by using the 

compressed and encrypted packets’ size as a proxy for the file’s entropy, they are able to build 
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a database of files and corresponding entropy distributions. They apply their method to 5434 

MP3 files, of which they create corresponding entropy fingerprints and are able to identify these 

files in TLS-encrypted traffic with an accuracy of .93 using a Random Forest. This vastly 

exceeds the random baseline (.00018) and shows that users’ privacy is under threat even when 

using TLS. 

8.3 WEBSITE FINGERPRINTING 

A related subject is website fingerprinting (WFP), where the goal is to identify which website, or 

part of a website, a user is browsing to, given only the user’s encrypted traffic. Extensive work 

has been done in this area, and we will highlight some important milestones in this section. 

Early work on website fingerprinting has been presented in 2003 by (Hintz, 2003). The authors 

examine a common real world setting, where both encryption and a proxy server are employed 

in order to hide which websites are being requested. In their work, the authors use the now 

deprecated Internet Explorer 5 plus SSL encryption. However, this setup hides neither the file 

size nor the number of files downloaded, since for each download a separate TCP connection is 

instantiated. Thus, by simply building a database of ‘fingerprints’ (the number of files and their 

corresponding sizes), the authors implement an attack which can infer the requested site. 

This attack becomes ineffective with the advent of more recent versions of the HTTP protocol, 

which make use of ‘persistent HTTP’ and ‘HTTP pipelining’, where a single TCP connection is 

used to transfer multiple files, without waiting for the corresponding responses. Thus, it is no 

longer trivially possible to distinguish individual files and infer their sizes. 

However, the threat to users’ privacy posed by WFP is far from banished. A more recent work 

has been presented by (Panchenko et al., 2016) in 2016, which analyses website fingerprinting 

over the TOR anonymity network. The authors make use of a similar concept as (Hintz, 2003) 

and observe that size, direction and timing of the transmitted packets still leaks considerable 

information, which is often enough to identify the requested website. More specifically, they 

identify websites from encrypted and TOR-anonymized traffic using the following feature set: 

Number of incoming and outgoing packets, sum of incoming and outgoing packet sizes and 

n=100 additional features which are derived from the cumulative sum of packet sizes over a 

trace of packages. Put differently, they fingerprint a website based on the timing and size of the 

encrypted packets. For evaluation, the authors propose two scenarios: A ‘closed-world’ 

scenario, where the number of websites a user may visit is limited and an ‘open-world’ scenario, 

where the task is to classify whether or not the current stream of traffic originates from an 

instance of a set of monitored websites. In the closed-world scenario, the author’s approach 

achieves .91 accuracy when classifying an encrypted stream of traffic using an SVM classifier. 

Simulating an open-world scenario, the authors use a dataset which comprises 100 monitored 

websites’ traffic fingerprint (90 instances each) and 9000 other pages, which serve as 

background noise. Their system is tasked to decide whether a given encrypted stream of traffic 

belongs to the monitored set or the background set. They achieve a true positive rate of more 

than .96 and a false positive rate of less than .02. 

This is a significant result with real-world consequences. Even when using TOR and TLS, an 

observer (such as the Internet Service Provider, an Institution or a State) can accurately detect 

if a user browses a website from a monitored set. Dissidents in totalitarian regimes can no 

longer use TOR and be sure to anonymously access blocked internet sites and may thus be 

subjected to repercussions for browsing websites not conforming to the regime’s ideology. 
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There have been efforts to mitigate the privacy threat posed by WFP. A straight-forward solution 

is to employ padding, such that the size of a file can no longer be inferred accurately (Juarez et 

al., 2016). These methods, however, come with considerable latency or bandwidth overhead 

((Juarez et al., 2016) report about 60%), since superfluous data has to be transmitted in order to 

throw off an adversary. Additionally, research has shown that even when these defences are in 

place, deep learning methods still allow for successful WFP attacks (Sirinam et al., 2018). 

8.4 DEVICE IDENTIFICATION 

Other works focus on extracting TCP or IP packet metadata, in order to investigate if the 

behaviour of specific packet contents can be correlated with OSes, device types and other 

characteristics. (Chen et al., 2014) utilize multiple features in TCP/IP headers for OS 

identification, NAT and tethering detection. The authors use real network traffic traces to 

evaluate the accuracy of fingerprinting. Their study shows that several techniques that 

successfully fingerprint desktop OSes are not effective for fingerprinting mobile devices, 

accordingly. For OS fingerprinting they use the IP TTL value, the IP ID monotonicity, the TCP 

timestamp option, the TCP window size scale option, and the clock frequency. For tethering 

detection they use the TCP timestamp monotonicity, the clock frequency, and the boot time. 

(Ruffing et al., 2016) investigate OS identification against smartphones that use encrypted 

traffic. A traffic content agnostic identification algorithm is proposed that is based on the spectral 

analysis of the encrypted traffic. Their evaluation shows that the identification accuracy can 

reach 100% with an input of 30 seconds of network traffic. 

8.5 LOCATION ESTIMATION 

(Husted et al., 2010) present the ability to use wireless radios for positioning and tracking 

individuals’ movements. The authors provide evidence that a small, but not insignificant number 

of mobile devices can be used to track a majority of users during a significant fraction of their 

travel. (Musa et al., 2012) focus on passively tracking unmodified smartphones, based on such 

Wi-Fi detections. The authors propose a trajectory estimation method which takes second-by-

second detections of a moving device as input, and produces the most likely spatio-temporal 

path taken. The results are evaluated using ground-truth GPS data. A cellphone’s position can 

be located by monitoring the traffic of certain applications that provide location-based services, 

even over encrypted network traffic. For example, (Ateniese et al., 2015) show that an 

adversary could be able to extrapolate the position of a target user by just analysing the size 

and the timing of the encrypted traffic exchanged between that user and a location-based 

service provider. 
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9. ENCRYPTED TRAFFIC 
ANALYSIS USE CASE:  
DNS TUNNELLING DETECTION 

If a computer is running malicious software, the attacker aims to keep this infection undetected 

for as long as possible in order to maximally exploit the target. For this reason, it is important 

that all communication between the malware and external Command and Control (C&C) servers 

is not detected and subsequently prevented by firewalls or intrusion detection systems. For 

example, a direct TCP connection to the outside could be too easily detected. For this reason, it 

is necessary for the attacker to hide the malware's network traffic in legitimate network traffic. 

One way to do this is DNS tunnelling. 

9.1 TECHNICAL BACKGROUND AND PROBLEM DESCRIPTION 

DNS tunnelling is a technique that allows a bidirectional exchange of information via the DNS 

protocol. This is an abuse of DNS, which has originally been designed to convert human-

readable domain names into IP addresses (A records for IP4, and AAAA records for IP6 

addresses). For example, DNS is used to find the IP address 172.217.16.133 for the 

mail.google.com domain.  

Additionally, DNS supports queries of the mail server (MX record) or the canonical name 

(CNAME record, representing the real or original name). For the example domain used above, 

the following CNAME record is returned: googlemail.l.google.com.  

In this way, after the client has initiated a connection, information can be exchanged in both 

directions. Malware such as viruses in a company network use a malicious DNS server to 

receive commands or load additional malicious code via the DNS protocol alone. The attacker 

can easily register a domain and then has full authority to answer corresponding DNS queries.  

If, for example, the attacker wants to load further malicious code onto the victim system, a so-

called stager could send the following DNS request: getPayload001.evildomain.com. This 

request is then sent to the local DNS server in the company network, which does not know the 

domain and therefore has to rely on the answer from evildomain.com, which sends the following 

CNAME record as reply: dg59knca2rlpmnh98jdwyasdfer34.evildomain.com. 

"dg59knca2rlpmnh98jdwyasdfer34" is then interpreted by stager as the first part of the malware 

code queried. After several similar requests, the entire malware code is transferred to the 

victim's system. Firewall and IDS systems only see DNS traffic, which tends to be considered 

harmless. Furthermore, there is no direct communication between the malicious software and 

the malicious domain. This makes DNS tunnelling very difficult to detect: The malicious 

communication is hidden “in plain sight”.  
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9.2 DNS TUNNELING DETECTION  

The detection of DNS tunnelling is therefore of great importance for network administrators. 

However, although the communication is not encrypted, the identification of DNS tunnelling is 

problematic. The following is an overview of the various ways to approaching the identification 

DNS tunnelling.  

Simple methods such as black- or whitelisting cannot be used in the context of DNS tunnelling 

detection. Blacklists are not feasible because a malicious attacker can always register new 

domains. Whitelists are not practicable because such lists cannot be maintained, and Internet 

access will be too restricted.  

Thus, payload based analysis seems more promising, where individual DNS queries are 

analysed and classified as malicious or benign. The following properties can serve as a basis 

for classification.  

 The size of incoming and outgoing DNS requests. When loading malicious code, attackers try 

to use the maximum character length in order to minimize the number of DNS requests that 

need to be sent.  

 The entropy of the requested domains and their character distribution (Born and Gustafson 

2010). Malicious domains often include cryptic subdomains, which encrypt malicious code or 

the instructions to be executed. These differ significantly from colloquial English. However, 

this need not necessarily be the case, and even benign domains often contain non-human-

readable words, e.g. in the case of content-delivery-networks.  

 The absence of accompanying, benign network traffic. Since DNS requests are often the first 

step to further requests, e.g. before an HTTP request through the browser, isolated DNS 

request indicate irregularities.  

In addition, statistical analysis can be used, for example counting the number of requests in a 

certain time window. An example of this is the frequency distribution of DNS records. (Raman et 

al. 2013) found that on average 38-48% of DNS traffic is generated by A records, 25% by AAAA 

and 20-30% by CNAME records. If a frequency distribution of requests is observed which 

deviates significantly from this, it can indicate malicious activity.  

(Buczak et al. 2016) use features like these to train a decision tree that distinguishes between 

benign and malicious DNS queries. They test their approach against DNS tunnelling software 

like Iodine and DNSCat2, and evaluate the accuracy of the system using True Positive / False 

Positive Detection Probability (TP/FP-DP).  

Their approach achieves over 99% TP-DP, and 0% FP-DP. In addition, several DNS tunnels are 

detected which originate from tunnelling software not represented in the training set. 
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10. ENCRYPTED TRAFFIC 
ANALYSIS TECHNIQUES 

10.1 OFFLINE ANALYSIS (ML & DL TECHNIQUES) 

The majority of works that employ machine learning techniques to investigate the feasibility of 

analysis and classification of encrypted network traffic focus on supervised learning algorithms. 

This means that these techniques train their models using ground-truth datasets and then test 

the performance of these models. Furthermore, there is a fraction of works that focus on 

unsupervised learning techniques, using algorithms that test similarities presented among the 

data.  

For instance, in the category of tunnelled website classification and fingerprinting (e.g. network 

traffic over OpenVPN, OpenSSH), the most popular algorithms are Multinomial Naive Bayes 

(MNB) (Herrmann et al., 2019), Support Vector Machine (SVM) (Panchenko et al., 2011) and 

Hidden Markov Models (HMM) (Cai et al., 2012). In addition, Levenshtein distance and the 

Jaccard classifier are used in a number of works to examine similarities between website 

fingerprints and properly classify them into categories (Lu et al., 2010). In the domain of network 

traffic analysis for mobile application classification, authors use again the same algorithms 

between other classifiers, such as Random Forest (RF), Decision Trees, Gaussian Naive Bayes 

(Alan et al. 2016) and the 𝑘-Nearest Neighbours (𝑘-𝑁𝑁) algorithm for pattern recognition 

(Draper-Gil et al., 2016). For more fine-grained classification, such as identifying usage actions 

and events inside mobile applications, authors use hierarchical clustering techniques (Fu et al., 

2016). Authors seem to conclude that feature selection is the key point to successfully classify 

and characterize traffic. Anderson et al. examine and address the pitfalls in traffic analysis, such 

as inadequate and inaccurate ground-truth datasets and non-stationary data distribution 

(Anderson et al., 2017). Specifically, the authors show that combining diverse views of the data, 

such as features pertaining to how the application is transmitting data with features that are 

representative of the application, is an approach that can significantly improve the performance 

of typical machine learning algorithms. Their work focus on malware traffic detection. 

Besides machine learning, researchers make use of neural networks and deep learning 

techniques. More specifically, in the domain of intrusion detection, (Shone et al., 2018) propose 

a deep learning classification model constructed using stacked non-symmetric deep 

autoencoders (NDAEs). (Tang et al., 2016) present a deep learning approach for flow-based 

anomaly detection in SDN environments. Authors build a Deep Neural Network (DNN) model for 

an intrusion detection system and train it with the NSL-KDD dataset, using six basic features of 

the NSL-KDD dataset. Kitsune (Mirsky et al., 2018) is a NIDS, based on neural networks, and 

designed for the detection of abnormal patterns in network traffic. It monitors the statistical 

patterns of recent network traffic and detects anomalous patterns.  

Furthermore, in the domain of application characterization with traffic analysis, (Lotfollahi et al., 

2017) present a system that is able to handle both traffic characterization and application 

identification by analysing encrypted traffic with deep learning, embedding stacked autoencoder 

and convolution neural network (CNN) to classify network traffic. (Cruz et al., 2017) identify 

tunnelled BitTorrent traffic with a deep learning implementation that takes a feature-set based 

on the statistical behaviour of TCP tunnels proxying BitTorrent traffic, transforms it to multiple 

timestep sequences, and uses it to train a recurrent neural network. 
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10.2 COMPUTATIONS (DIRECTLY) ON ENCRYPTED TRAFFIC 

Besides typical encryption schemes, homomorphic encryption has been proposed. 

Homomorphic encryption differs from typical encryption methods in that it allows computation to 

be performed directly on encrypted data without requiring access to a secret key. The result of 

such a computation remains in encrypted form, and can at a later point be revealed by the 

owner of the secret key22. However, the resulting performance efficiency appears to be 

questionable when it comes to current network speed and capacity. 

10.3 INSPECTION USING SIDE-CHANNEL INFORMATION (METADATA) 

Cisco's Encrypted Traffic Analytics (ETA) is a proprietary solution for businesses that offers 

traffic security and analytics by utilising various features of the network traffic, extracted from 

other Cisco's technologies23. encrypted traffic analysis extracts four main data elements; (i)~the 

initial data packet, (ii)~the sequence of packet lengths and times, (iii)~the byte distribution, and 

(iv)~TLS-specific features. The initial data packet IDP is used to obtain packet data from the first 

packet of a flow. It allows extraction of interesting data such as an HTTP URL, DNS 

hostname/address, and other data elements. The TLS handshake is composed of several 

messages that contain interesting, unencrypted metadata used to extract data elements such 

as cipher suites, TLS versions, and the client's public key length. The sequence of packet 

lengths and times conveys the length of each packet's application payload for the first several 

packets of a flow, along with the inter-arrival times of those packets. 

The byte distribution represents the probability that a specific byte value appears in the payload 

of a packet within a flow. The byte distribution of a flow can be calculated using an array of 

counters. The major data types associated with byte distribution are full byte distribution, byte 

entropy, and the mean/standard deviation of the bytes17, 23. 

OTTer (Papadogiannaki et al., 2018) is a scalable engine that identifies fine-grained user 

actions in OTT mobile applications even in encrypted network traffic. OTTer uses signatures of 

TCP packet payload length sequences and it is able to detect user actions, such as voice/video 

calls and messaging, in four popular Over-The-Top applications, i.e. WhatsApp, Skype, 

Facebook Messenger and Viber. The performance overhead of OTTer when appended in a 

proprietary DPI engine was very low even in real traffic conditions. 

10.4 MIDDLEBOXES AND INTERCEPTION OF ENCRYPTED TRAFFIC 

Client-side software and network middleboxes that inspect HTTPS traffic operate by acting as 

transparent proxies. They terminate and decrypt the client-initiated TLS session, analyse the 

inner HTTP plaintext, and then initiate a new TLS connection to the destination website.  

By design, TLS makes such interception difficult by encrypting data and defending against man-

in-the-middle attacks through certificate validation, in which the client authenticates the identity 

of the destination server and rejects impostors. To circumvent this validation, local software 

injects a self-signed CA certificate into the client browser's root store at install time.  

For network middleboxes, administrators will similarly deploy the middlebox's CA certificate to 

devices within their organization. Subsequently, when the proxy intercepts a connection to a 

particular site, it will dynamically generate a certificate for that site's domain name signed with 

its CA certificate and deliver this certificate chain to the browser (Durumeric et al., 2017). 

                                                
22 Basics of Homomorphic Encryption. http://homomorphicencryption.org/introduction, accessed November 2019. 
23 Encrypted Traffic Analytics (ETA). https://www.cisco.com/c/en/us/solutions/enterprise-networks/enterprise-network-
security/eta.html, accessed November 2019. 

http://homomorphicencryption.org/introduction
https://www.cisco.com/c/en/us/solutions/enterprise-networks/enterprise-network-security/eta.html
https://www.cisco.com/c/en/us/solutions/enterprise-networks/enterprise-network-security/eta.html
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(Goh et al., 2010A & Goh et al., 2010B) propose mirroring the traffic to a central IDS, able to 

decrypt the traffic and perform deep packet inspection, yet, without any privacy preserving 

guarantees. As Symantec states, most cyber threats hide in SSL/TLS encryption -- up to 70% of 

all network traffic. Symantec Proxies and SSL Visibility Appliance decrypt traffic to support 

infrastructure security and protect data privacy24 . More specifically, Symantec offers the 

Encrypted Traffic Management (ETM) tool25 that provides visibility into encrypted traffic by 

decrypting part of it; however this is a technique that could eventually cause privacy violations. 

Haystack enables fully device-local, context-aware traffic inspection on Android mobile devices 

using a standard app distributable via the usual app stores and offers device local, context-

aware traffic inspection on commodity mobile devices. To offer full functionality --even for 

encrypted network traffic-- Haystack intercepts encrypted traffic via a local TLS proxy. At install 

time, Haystack prompts the user to install a self-signed Haystack CA certificate in the user CA 

certificate store (which they may accept or decline) (Razaghpanah, 2015). 

10.4.1 Security Impact of HTTPS Interception 

(Durumeric et al., 2017) show that web servers can detect interception by identifying a 

mismatch between the HTTP User-Agent header and TLS client behaviour. The authors build a 

set of heuristics to detect interception and identify the responsible product. Deploying these 

heuristics at the Mozilla Firefox update servers, a set of e-commerce sites and the Cloudflare 

content distribution network, they found out that there is an order of magnitude more 

interception than previously estimated. They investigate popular middleboxes and client-side 

security software, finding that nearly all reduce connection security and many introduce severe 

vulnerabilities. 

                                                
24 Symantec’s SSL Visibility Appliance. https://www.symantec.com/products/ssl-visibility-appliance, accessed November 
2019. 
25 Symantec’s Encrypted Traffic Management Family. https://www.symantec.com/products/encrypted-traffic-management, 
accessed November 2019. 

https://www.symantec.com/products/ssl-visibility-appliance
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11. IMPROPER TLS PRACTICES 

The Transport Layer Security (TLS) protocol provides security to network communications 

between a server and a client. It encrypts and secures a connection in a way that prevents 

eavesdroppers from reading and modifying the data that are being transferred. It also provides 

authentication for the participants of the connection.26 

TLS is commonly used to secure the HTTP protocol. This combination is commonly referred to 

as the HTTPS protocol.27 This widely popular extension of the HTTP protocol provides 

application level security to websites or desktop and mobile applications. This chapter will be 

focused on this protocol, but the principles mentioned apply to other uses of TLS as well. 

The security of a connection does not come by default simply by enabling TLS. There are 

several versions of this protocols with different options. Therefore, the security features and 

advantages of this protocol are available only when it is used properly. An error during the 

development process of an application that uses TLS can cause its connections to be insecure; 

even though the connection might be encrypted, an attacker can easily evade the security 

measures and decrypt or modify it. 

Improper TLS practices undermine the features that it offers and create a false sense of 

security. The additional danger comes from the fact that the parties communicating over such 

connection trust its security and are willing to transfer data they would not transfer over an 

unencrypted connection. 

The core part of this chapter describes several common improper TLS practices and their 

impact. It then further proceeds with a study of the security of mobile Android applications. This 

study confirmed that the errors when using TLS are common among popular applications and 

dangerous for their users. It also shows the reaction of the developers to the issues found. The 

following section discusses the new version of TLS and the changes it brings. The chapter 

closes with a section summarizing the main good practices when deploying TLS in an 

application. 

11.1 IMPROPER PRACTICES AND THEIR IMPACT 

TLS offers security features for client/server connections. However, these features rely on 

proper practices when using this protocol. TLS connection with vulnerabilities created by bad 

implementation practices are often easily exploitable making the presence of TLS close to 

useless. This seemingly encrypted but in fact a vulnerable connection might be even more 

dangerous than if the network traffic was not encrypted at all. 

The additional danger comes from the false sense of security that TLS connection with a 

vulnerability creates. A client using an application might trust it more just because it uses TLS. 

This leads to the client sharing more private information and possibly a subsequent attack which 

leads to a compromise of information that the client would otherwise not share had he known 

the connection was insecure. 

The following sections describe improper practices when using TLS and their impact. For each 

subsection it is discussed how these issues occur and how are they exploited. 

                                                
26 https://tools.ietf.org/html/rfc5246, accessed November 2019. 
27 https://tools.ietf.org/html/rfc2818, accessed November 2019. 
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11.1.1 Lack of Certificate Validation  

Certificate validation is a vital part of implementing an encrypted communication with TLS. The 

lack of this important practice can expose the communication to be vulnerable to man-in-the-

middle (MITM) attacks. These attacks allow an adversary to easily decrypt all the network traffic 

as well as modify it. This might lead to the adversary getting any information from the traffic or 

exploiting the target device itself. This improper practice hurts TLS implementation in every way 

- eavesdropper can decrypt, observe and modify the network traffic and therefore overcome all 

the security measures of TLS. 

For example, a transport application that fails to perform certificate validation is easily 

exploitable. With a MITM attack, an adversary can steal account credentials, observe the user’s 

current location and the planned route to a destination. By modifying the traffic, the adversary 

can also inject a malicious link to exploit the client’s phone or redirect the user to a different 

destination than the desired one.28 

11.1.2 Man-in-the-middle attack on a TLS connection 

The goal of a MITM attack is to observe or modify the victim’s network traffic. It happens when 

an adversary gets into a specific position to be able to interact with the stream of data going to 

and from the victim’s device. An example of that would be an attacker using a public Wi-Fi at a 

cafe and attacking a victim connected to the same Wi-Fi. With an ARP-poisoning attack, the 

adversary can redirect all the victim’s traffic to another device. This attack makes the router and 

the victim send all the communication between them to the attacker instead of one another.  

At this point, the adversary can observe the traffic and modify it. When the traffic is unencrypted, 

it is generally easy for the attacker to modify it without the client noticing the change in the data 

transferred. However, when the attacker modifies a TLS traffic, because of the integrity that TLS 

provides, the one receiving a modified packet will be able to notice that. For the receiver to not 

notice this change, the attacker must decrypt the traffic, modify it and then encrypt it using the 

standard TLS method. This however is possible only when there is a vulnerability such as the 

client not performing certificate validation. 

During a connection’s initiation phase, a server sends its certificate to a client. The client can 

then verify if this certificate is valid and if it belongs to that server. By validating the server’s 

certificate, the client verifies the identity of the server. The certificate is a part of a key 

negotiation process. The keys generated from that process then enable to encrypt the 

upcoming communication. However, when this step during the connection initiation is not 

performed, it is no longer fully secure. The client cannot be sure of the server’s identity. In such 

a case, an eavesdropper can swap a certificate coming from the server to the client for a 

different one. The certificate received by a client is not validated, and therefore the client doesn’t 

notice anything and continues with the connection. This enables the adversary to get a hold of 

the key used to encrypt and decrypt the rest of the connection. The adversary eavesdropping 

on the communication can then observe and modify it. 

                                                
28 https://www.civilsphereproject.org/blog/2019/6/6/mobile-insecurity-series-application-czech-public-transport-idos-leaks-
your-location-password-and-email-1, accessed November 2019. 

https://www.civilsphereproject.org/blog/2019/6/6/mobile-insecurity-series-application-czech-public-transport-idos-leaks-your-location-password-and-email-1
https://www.civilsphereproject.org/blog/2019/6/6/mobile-insecurity-series-application-czech-public-transport-idos-leaks-your-location-password-and-email-1
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Figure 7: The client connects to a Wi-Fi router which then forwards the connection to a server. 

The attacker does not interfere. 

 

Figure 8: The ideal position for an attacker to perform a MITM attack is to be on the route of a 

connection from a client to a server. In this scenario, an attack forced the router and the client to 

send all the traffic to the attacker instead of one another. 

 

Certificate validation is a necessary part of using TLS. Without its presence, the features and 

advantages of TLS are completely undermined. Moreover, the fact that the traffic is encrypted 

can be misleading as it is not fully secure. Behaviour of the user would rapidly change if the 

user knew that the data could be observed and modified. 

11.1.3 Improper Use of HTTP Redirects  

Redirection messages are a standard practice in HTTP and serve to redirect a client to a 

different website. They are initiated by an HTTP request sent to a host. The host then answers 

with a redirection message to redirect the client to a different location. This is a practice which 

enables an eavesdropper to modify the redirection packets and attack the client.  

When a client tries to connect to a server using the insecure HTTP protocol, a server can try to 

redirect this connection to a secure one. A common practice is to use HTTP redirects which 

instruct the client to connect to a different network port which supports HTTPS. Redirecting a 

user to use HTTPS instead of HTTP seems like a good practice. It prevents the communication 



ENCRYPTED TRAFFIC ANALYSIS 
November 2019 

 
38 

 

to continue unencrypted. However, even one unencrypted packet can be exploited by an 

eavesdropper. This practice leads to leaking information as well as making the user visit 

malicious servers. 

11.1.3.1 How redirects leak data  

The first issue occurs when the initial HTTP request already contains information. It usually 

happens when an application initiates a connection with an unencrypted HTTP request packet. 

Such packet might already contain the user’s credentials, a tracking number of a package or 

other sensitive data. This can be easily observed by an eavesdropper. 

11.1.3.2 How they can be modified to redirect a victim to a malicious site  

The second issue occurs when an eavesdropper modifies the redirection packet coming from 

the server, in particular the location field. This will make the client redirect to any site the 

eavesdropper wants to. Redirecting to a malicious website can cause the victim’s phone to be 

exploited. 

An example of that would be a vulnerability we discovered in an antivirus application which we 

tested as a part of our research that is described in a later section of this chapter called 

“Perspective of the Industry.” The vulnerability enables for the following scenario. The user 

wants to log in, the application sends a single HTTP request that is then redirected to a secure 

connection. An adversary can however easily change the response from the server which was 

still unencrypted and redirect the user to a site that looked identical. The server that the user is 

redirected to is mimicking the login site but is managed by the attacker. There is no indication 

for the user that the login site is malicious which leads to the adversary getting credentials and 

possibly planting some malicious exploit. 

The two packets in this type of unencrypted communication can lead to information leak and 

baiting a client to visit the website of an attacker’s choosing. However, the responsibility is at the 

client’s side. The client should not initiate unencrypted connection in the first place. The server’s 

best options are redirecting to a secure connection. It is a standard practice that is convenient 

and widely used. Not responding to an HTTP request at all might seem like a more secure 

option but in the case of a MITM attack, the eavesdropper can just craft a custom redirection 

packet to respond the client’s request without the servers reply.  

HTTP redirects are a common practice that can be easily used for an attack. Nevertheless, it is 

often used by the developers of client applications and not considered as a vulnerability even 

though it poses a significant risk to the users. 

11.1.4 Weak Ciphers and Deprecated Protocols  

In the world of information technology security, there is a constant cycle of development, new 

exploits and further development to address the vulnerabilities found. TLS is no different. 

Throughout its existence there were several successful attacks that exploited different features 

of TLS. New practices and versions of TLS address these issues. However, when a developer 

of an application does not pay attention to this evolution, it is easy for an attacker to exploit it 

using known vulnerabilities in the old technology that an application uses. 

11.1.4.1 TLS cipher suites and negotiating ciphers for a connection.  

In the beginning of a TLS connection, both communicating parties agree to use a cipher suite to 

negotiate a symmetric key to encrypt and send application data. However, with the ever-

evolving landscape of information technology, there are new vulnerabilities discovered in 

ciphers as well. And, with the increase of computing power, the time for an attacker to perform 

attacks which require heavy computation decreases. This makes it possible to perform such 

attacks in a reasonable time. The time it takes to guess a key or decrypt the network traffic 

usually depends on the length of the keys used and the strength of the encryption algorithms. 

These known threats to the security of TLS can be easily mitigated by not using old and 
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deprecated protocols and using the latest TLS versions with cipher suites recommended by the 

Internet Engineering Task Force (IETF).29 

11.1.4.2 Notorious attacks that exploit vulnerabilities in the old and the new protocols  

There are several known attacks against specific versions of TLS. These attacks can be usually 

easily mitigated using the latest TLS version. However, an attacker can find servers that use 

deprecated protocols and exploit their clients by using attacks that were used in the past before 

the vulnerabilities have been patched. 

11.1.4.3 POODLE 

An attack called the Padding Oracle On Downgraded Legacy Encryption affects the 

predecessor of TLS, SSL 3.0. This attack exploited the option in TLS which allowed the 

communication to be downgraded to SSL 3.0. After that, the attack consists of targeting the 

cipher-block-chaining (CBC) mode which eventually enables the attacker to decrypt the traffic. 

The impact is high as the attacker can decrypt information like cookies, passwords and other 

text which is sent encrypted.30 

Figure 9: Attackers may force the communication between a client and server to downgrade 

from TLS to SSL 3.0 to be able to decrypt the network communication31 

 

11.1.4.4 HEARTBLEED  

Heartbleed is a name for a serious bug in the OpenSSL library which allows an attacker to 

decrypt the content that is encrypted using TLS. This was possible because of a vulnerability 

that enabled attackers to read the memory of systems that used the library. This was not a flaw 

in the TLS protocol itself but an implementation mistake in the OpenSSL library which provides 

cryptographic services such as TLS to applications.32 

                                                
29 https://tools.ietf.org/html/rfc7525, accessed November 2019. 
30 https://www-01.ibm.com/support/docview.wss?uid=swg21693271, accessed November 2019. 
31 https://blog.trendmicro.com/trendlabs-security-intelligence/poodle-vulnerability-puts-online-transactions-at-risk/, accessed 
November 2019. 
32 https://heartbleed.com, accessed November 2019 

https://tools.ietf.org/html/rfc7525
https://www-01.ibm.com/support/docview.wss?uid=swg21693271
https://blog.trendmicro.com/trendlabs-security-intelligence/poodle-vulnerability-puts-online-transactions-at-risk/
https://heartbleed.com/
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11.1.4.5 ROBOT 

Return Of Bleichenbacher's Oracle Threat is an old attack with new updates that can exploit 

even the latest version of TLS. This attack targets the use of an insecure use of the RSA 

encryption mode. Attacker can record this network.33 

11.1.4.6 Using key negotiation methods with no forward secrecy  

Forward secrecy is a feature of a TLS connection which assures that in case of a future 

compromise of the private key of the given server the past connections cannot be decrypted. 

This is ensured by selecting specific key generation methods during the TLS handshake.34 

However, some protocols do not support this feature and using them creates a vulnerability that 

can have great consequences. When a server’s private key gets compromised, an adversary 

can not only decrypt all the victim’s traffic from that point on but also decrypt the connections for 

which the private key was used in the past. 

It is necessary to use the latest TLS protocols with the recommended cipher suites and not use 

the protocols that are widely considered insecure. 

11.1.4.7 Lack of adaptability 

Another important practice for a development of secure applications is developing them to be 

adaptable when new exploits or issues occur. Whenever there is a new vulnerability discovered 

that affects the application, it is important to fix it as soon as possible. Because if the application 

stays vulnerable and is exposed to the Internet, there are most probably going to be attackers 

which will try the new attack on it. Time is usually of essence in these cases, so it is important 

for the developers to create an application in a way that enables them to make changes quickly. 

For example, deprecate a cipher suite, update a library, or a protocol used. 

11.1.5 Other improper practices  

There are other improper practices that undermine the features that TLS offers. A lot of them 

have to do with the way private keys are generated and stored. A private key that is used in the 

encryption process of a server's communication can be used by an attacker to decrypt and 

optionally modify the traffic. Other improper practices have to do with server certificates. Using a 

certificate that is not signed by a Certificate Authority or was generated by some untrusted 

source. The use of this certificate for a website can cause attackers to exploit the connection to 

this server with MITM attacks as browsers are not going to be able to validate the certificate.  

The most common improper practices when deploying TLS are covered in this chapter. The 

practices mentioned are mostly compromising the security of a connection. Practices regarding 

the performance of the connection and other attributes of a TLS connection are not covered 

here. 

11.2 THE NEW PROTOCOL AND ITS IMPACT 

11.2.1 Introduction to TLS 1.3  

Ten years after the TLS 1.2, a new version of the popular Transport Layer Security protocol was 

released.35 This new protocol, called TLS 1.3, brings several improvements to performance and 

security. The changes help mitigate threats from a wide range of attacks, such as the previously 

mentioned ROBOT attack. Not only is the new version of TLS more secure, it also decreases 

the average time it takes to perform a TLS handshake which speeds up each connection. 

                                                
33 https://robotattack.org, accessed November 2019. 
34 https://www.ietf.org/rfc/rfc2409.txt, accessed November 2019. 
35 https://www.ietf.org/blog/tls13, accessed November 2019. 

https://robotattack.org/
https://www.ietf.org/rfc/rfc2409.txt
https://www.ietf.org/blog/tls13
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11.2.1.1 The biggest differences from the last version  

The main differences between TLS 1.3 and TLS 1.2 are the following. 

 The support for some symmetric encryption algorithms ended. The fact that insecure and old 

cipher suites were discarded is a positive update. However, it is important for servers to 

support this version and for application developers to use it as well. 

 All public key based key exchange mechanisms now provide forward secrecy. This fact helps 

eliminate the use of deprecated and vulnerable key exchange mechanisms. 

 All messages after server hello are encrypted. This means that the domain and the certificate 

will also be encrypted. This doesn’t eliminate bad practices but helps prevent several attacks 

that tried to decrypt previously observed traffic.36 & 37 

11.3 PROPER TLS PRACTICES  

There are several good practices when deploying TLS which should be taken into consideration 

in order to take advantage of all the security features that the protocol offers.  

11.3.1 Certificates validation and pinning  

Certificate validation is an essential practice when using HTTPS anywhere. It helps the client 

authenticate the server. This practice prevents MITM attacks that intercept the server’s 

certificate and allow an attacker to decrypt the traffic.  

Certificate pinning is tying the given connection with a specific certificate which belongs to a 

specific host or with a certificate authority then signs certificates. This practice prevents MITM 

attacks as well as other attacks where the adversary installs a malicious certificate on the 

victim's device. 

11.3.2 HTTP redirects 

HTTP redirects are not a responsibility of servers. It is the client who initiates the connection 

and becomes vulnerable. Therefore, the client applications are responsible to initiate each 

connection using the TLS protocol. From the server’s perspective, it is not considered a bad 

practice but rather a standard one. However, by not sending any unencrypted traffic, the servers 

can force the client applications to use strictly HTTPS.  

11.3.3 Private Keys  

The length of private keys also affects the security of the connection. A long enough key can 

prevent attacks by adversaries that try to guess it. It is also essential to store private keys 

properly so they are not accessible to anyone but the authorized individuals. 

11.3.4 Using latest versions of TLS and deprecating older ones  

Not allowing connections using old and deprecated protocols is a necessary practice which is 

also a responsibility of the server. 

11.3.5 Deploying TLS 

When implementing an application that uses TLS connections, it is important to be prepared to 

change and adapt according to new vulnerabilities and exploits. When a new vulnerability 

occurs, it is then essential for the application to quickly migrate to a safer option. 

                                                
36 https://tools.ietf.org/html/rfc8446, accessed November 2019. 
37 https://www.ietf.org/rfc/rfc5246.txt, accessed November 2019. 

https://tools.ietf.org/html/rfc8446
https://www.ietf.org/rfc/rfc5246.txt
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11.3.6 Certificate signing and trusted CAs  

When deploying TLS on a server, it is important to make sure that the server’s certificate is valid 

and signed by a trusted certificate authority. With an invalid certificate, it is easier to perform a 

MITM attack and mimic that certificate. 

11.4 PERSPECTIVE OF THE INDUSTRY 

Improper TLS practices are to be expected from individual developers who are still learning 

about TLS and do not have enough experience. This however should not be a common problem 

with larger companies and teams of developers that have all the resources to ensure that 

proper TLS practices are in place.  

Nevertheless, a research by the CivilSphere project38 points to the opposite. The researchers 

evaluated several mobile applications to see whether they had some of the issues mentioned in 

this chapter. Issues were found in over 81% of the applications that were tested. These issues 

ranged from single HTTP redirects to the lack of certificate validation. Moreover, many of the 

developers, to which the issues were reported to, never addressed them. These results point to 

the fact that poor practices are both widely spread and often not considered necessary to be 

fixed. 

11.4.1 Widely spread malpractice 

The researchers of CivilSphere tested several popular Android mobile applications. They 

focused mainly on two groups of applications. The first group consisted of the most popular 

Android Antivirus and security applications, the second one consisted of popular Android 

applications that are the responsibility of Latin American governments. All these applications 

were heavily used and together have well over 1.5 billion installations. Because of the nature of 

the applications, their wide use and the fact that the entities responsible for them are 

government institutions or large corporations, they are usually expected to be secure. The goal 

of this research by the CivilSphere project was to analyse the state of widely used and trusted 

Android applications and report on their security. The testing process was the following. The 

researchers chose an application to test. They connected an Android device to their own VPN 

which stores a copy of all the network traffic going through it. After that they installed the 

application and used it for some time as a normal user would. They tried the main functionalities 

of the application. After that they retrieved the network capture from the VPN and manually 

analysed the traffic. 

In the network traffic, the team of researchers looked for any vulnerabilities and leaking 

information they could find. Finally, they reported these issues to the developers of the given 

application and continued to be in contact with them if they needed further assistance to fix the 

issues. 

The most common issue was the use of the HTTP protocol for communication with vendor and 

advertisement servers. This communication consisted of HTTP redirects and other HTTP 

communication with no encryption. Second most occurring vulnerability was the lack of 

certificate validation. Third most occurring issue were occurrences of the use of deprecated 

protocol TLS 1.0. 

These vulnerabilities result in leaking personal data and information about the user and the 

device. It also creates a way for attackers to inject exploits, malicious scripts and redirect users 

to malicious sites.  

                                                
38 https://www.civilsphereproject.org, accessed November 2019. 

https://www.civilsphereproject.org/
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47 application were tested in total. 29 Security applications, 15 Latin American applications and 

three others. 

 Over 96% applications had some of the above-mentioned security issues. 

 94% of them had some HTTP traffic that could be used in a malicious way by an adversary. 

 24% of applications tested lacked certificate validation. The total of applications tested for 

certificate validation was 30. 

 64% of the developers of applications that had some vulnerabilities did not respond to our 

reports in any way. 

These common issues in applications make users vulnerable to all kinds of attacks. Moreover, a 

lot of the time the developers of these applications do not address the issues which leaves their 

users open for exploits. These issues affect over one billion Android users. 

From the above one can conclude that the TLS protocol offers great features, but only when 

handled properly. It also provides freedom for developers to use it in different ways and not 

restricting them to specific features that are considered secure. As TLS is widely used it is 

important that it supports different cipher suites and other modifiable options. However, these 

options also allow for poor practices that undermine the features of TLS. It is therefore important 

for developers using TLS in their applications to know the protocol well and all the 

recommended practices that help provide a secure connection. Finally, a consequence of 

improper TLS practices is not only losing all the features that TLS offers but also creating a false 

sense of security that can cause more harm than if it was known that the traffic was 

unencrypted. 
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12. CONCLUSIONS 

Increasing processing capabilities (with a decreasing cost), years of promoting cyber hygiene & 

security by design and conscious end users have led to widespread adoption of communication 

encryption. According to recent studies 70%-90% of internet traffic is protected by HTTPS and 

many applications employ encryption by default for their communication. Unfortunately, a similar 

picture is drawn in the adversarial part. Beyond ransomware, more and more sophisticated 

malicious software also employing encryption – whether standard protocols, like TLS, or custom 

cryptoalgorithms – to avoid detection and protect their communication. Hence it is important to 

consider the alternatives organizations have to analyse their [encrypted] network traffic in order 

to detect malicious activities and react appropriately. 

The main conclusion of this report is that there is no one solution to rule them all, each has its 

drawbacks and many of the researched ML and AI based proposals have not reached an 

appropriate maturity level. Organizations will need to use a combination of tools and methods to 

protect their infrastructure and should carefully assess the risks, both negative and 

opportunities, inherent to them. Relying on only TLS inspection, for example, will leave the 

organization blind to threats using non-standard encryption. 

Regarding the privacy implications, a big majority of the research proposals discussed are 

focused on end users’ privacy, as opposed to security controls. In many instances the same 

results can be used both as a tool to protect cyber infrastructure and to invade a user’s privacy; 

tracking, or leaking information about him or her. For example, fingerprinting techniques so far 

have been researched with respect to their privacy implications, but could potentially also be 

employed in data loss prevention.  

In all cases, users should be aware that encryption cannot offer perfect privacy and especially 

pay attention to cases were identification and tracking are possible. Fingerprinting techniques, 

for example, pose a serious threat, especially in controlled environments. Furthermore, device 

characteristics, such OS, browser set up etc. can be revealed by observing only encrypted 

traffic and even privately owned and managed devices might leak enough information to allow 

adversaries to enumerate installed applications or even identify fine grained user activity, like 

voice/video calls or messaging. 

The main challenge is then to find a balance between end-to-end security, protecting the 

privacy of end users and at the same time gathering valuable information from the traffic to 

detect possible threats and better allocate and protect resources. It is a difficult problem and it’s 

important to discover new ways of detecting malicious behaviour, instead of simply opting for 

decreased user security and privacy. New technologies and algorithms of Artificial Intelligence 

and Machine Learning might be part of the solution, but as we saw this remains an active field 

of research were more effort should be put; especially on data driven and statistical methods for 

application classification in encrypted traffic, which seem quite promising. 

Since the accuracy of data driven methods is extremely dependent on a) the quality of the data 

set and b) the features, it comes as no surprise that another area of research that needs 

attention is the generation of adequate datasets, of good quality, that will allow for training and 

testing new tools. Furthermore, one should remain aware of the constraint scope in which 

several proposed solutions operate, which somewhat limits their applicability in dynamic 

environments. Here again more research is required and encrypted traffic analysis using Neural 

Networks might be a possible direction; given that it does not require manual feature extraction, 

since they operate directly on the raw traffic, however yet more research is needed in the area. 



ENCRYPTED TRAFFIC ANALYSIS 
November 2019 

 
45 

 

In general, the problem of malware traffic detection is a very difficult one from Machine Learning 

point of view. However, the detection of encrypted malware traffic compared to unencrypted 

traffic detection is much more difficult problem, because all payload data of the traffic is hidden 

due to encryption and the detection with high accuracy, low false positive and false negative 

rates is a challenge for the whole community. 

HTTPS interceptor proxies (aka middleboxes, TLS interception etc.) allow the use of classic 

detection methods (for detecting unencrypted malware traffic) on encrypted traffic, significantly 

simplifying the problem at hand. However, there are critical disadvantages; viz. resource 

intensive operations, does not respect end-to-end security, creates a potential point of 

exposure, it cannot protect against adversaries using non-standard encryption. 

Detection of encrypted malware behaviour remains more challenging though and the 

introduction of TLS 1.3 makes classification of malicious behaviour even harder. Again more 

research will be needed to find alternative classification solutions for TLS 1.3, which might rely, 

for instance, on low-level features from the TCP layer. If successful, this methods would have 

the added benefit of being oblivious to the type of encryption used by the malware user. 

Finally, to help mitigate future threats, like quantum cryptanalysis, it is necessary for developers 

to react quickly, making software adaptable to changes and developing it in a way that enables 

addressing security incidents as fast as possible. Designing a software without considering 

exploits and vulnerabilities that can occur is dangerous and will lead to security compromises. 
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A ANNEX: 
TECHNICAL BACKGROUND 

A.1 COMMUNICATION IN COMPUTING SYSTEMS 

IT network communication is standardized by the Open Systems Interconnection model (OSI 

model) (Zimmermann 1980). In this model, communication is abstracted into seven layers, 

where each layer performs a specific task. For example, the first layer (the physical layer) 

converts digital bits into an analog signal that can then be sent over a wire or over the air. Upper 

layers are responsible for segmentation and error correction (layer 2, Ethernet), routing (layer 3, 

IP), segmentation and error handling of the routing layer (layer 4, TCP) and the application layer 

(layer 7), which usually comprises layers 5 and 6. 

Figure 10: ISO/OSI TCP/IP comparison 

 

As an example, consider a server sending a website via HTTP to a client. The application layer 

constructs the HTTP packet and hands it down to the next layer, the transport layer. There, the 

TCP protocol is used to perform flow control, segmentation and error control. The transport 

layer splits the packet into smaller protocol data units (PDU), each of which is handed down to 

the IP layer, which performs routing services. During this process, each layer adds a small 

section at the beginning of the packet, which contains some layer-specific information (for 

example, the IP layer adds a header which contains the destination IP address). Thus, the 

packet is encapsulated or ‘wrapped’ by each processing layer, with the original packet 
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(constructed by the application layer) as the innermost packet. The following picture gives a 

graphical illustration. The HTTP packet is encapsulated by the TCP segment, which is 

encapsulated by the IP packet, which again is encapsulated by the Ethernet frame. 

Figure 11: Encapsulated HTTP packet 

 

Note that this packet is not encrypted at all, so at any given time, any of the corresponding 

packets can be inspected. Interesting properties such as the application protocol as well as the 

application content can be directly observed. Encryption is added by introducing Transport 

Layer Security (TLS), a cryptographic protocol which runs on top of TCP. Thus, the HTTP 

packet is encrypted using TLS, and the encrypted bytes are passed down to TCP, which 

processes them as usual. This results in the following packet structure. 

Figure 12: TLS encrypted encapsulated HTTP packet 

 

This obscures the application protocol. When inspecting such a packet, anything within the TLS 

frame is encrypted, and the original application protocol may not be inferred directly, let alone its 

contents. 
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A.2 MACHINE LEARNING BACKGROUND 

Machine learning methods are data driven methods. This means that for a machine learning 

algorithm to learn, it requires data. In supervised learning, data consists of a pair (𝑋, 𝑦), where 𝑋 

contains the data to learn from, and 𝑦 constitutes the target class to learn. For example, 𝑋 may 

be an (𝑛, 𝑑) matrix comprising 𝑛 observations, where each observation comprises 𝑑 features. 

The appropriate 𝑌 would be an array of size 𝑛, containing the ground truth (e.g. the result the 

classifier has to learn). 

Features are atomic observable properties of a given network flow or packet. In encrypted 

traffic, these features may be obtained from either the header of a packet, properties of the 

unencrypted handshake, by observing statistical properties such as the round-trip-time (RTT) or 

even from the encrypted data itself (via byte-patterns). While there are many ways to extract 

features, all of the approaches share the same premise: Different applications exhibit different 

behaviour, which will transpire to the features. With a large enough data set, a mapping 𝑓 may 

be created which maps a set of features to their corresponding application. This principle 

underlies all of ML and suffices to understand the ML used in the following chapters. A detailed 

study on the subject may be found in (Bishop 2006) . 

 



 

 

 

 

 

 

ABOUT ENISA 

The mission of the European Union Agency for Cybersecurity (ENISA) is to achieve a high 

common level of cybersecurity across the Union, by actively supporting Member States, 

Union institutions, bodies, offices and agencies in improving cybersecurity. We contribute to 

policy development and implementation, support capacity building and preparedness, 

facilitate operational cooperation at Union level, enhance the trustworthiness of ICT 

products, services and processes by rolling out cybersecurity certification schemes, enable 

knowledge sharing, research, innovation and awareness building, whilst developing cross-

border communities. Our goal is to strengthen trust in the connected economy, boost 

resilience of the Union’s infrastructure and services and keep our society cyber secure. 

More information about ENISA and its work can be found www.enisa.europa.eu. 

 

 

 

http://www.enisa.europa.eu/

